Scalable Query Profiling Employing Purging
and Elimination Technique

Ruben A. Parazo
Tarlac Agricultural University
Paniqui Tarlac Philippines
+639774623431
raparazo@yahoo.com

ABSTRACT

Reusing Queries contributes in speeding up the performance of
databasc in responding to future queries as it can reduce the
number of database queries to be processed and sent back to
the user. Profiling a query in a machine who requested a query
in database server improved the response time when the query
is reused. It also avoids the utilization of database and network
resources. This is becausc the data will be served locally as
compared to obtaining the data from the original source that is
still travelling in the network which entails cost not only on the
database server but also in the network infrastructure. A
condition in the query that limits the result set of the query will
be removed before it will be sent to the database for evaluation.
This is to enhance the ability and usefulness of the result set of
the query in answering future subdued queries to be requested.
To prevent query capability duplication as well as to efficiently
manage the space utilizes in the profiling of queries, profiled
queries that are subdued by an incoming query will be purged
while queries that are subdued to profiled query will not be
accepted in the query logs and its result set will not be
exported.

CCS Concepts

Profiling Query — Query logs e Purging query — avoids
query capability duplication e Elimination — enhanced the
ability of the result set of query in answering future
subdued query to be executed. The dependency of the client
to the database server in terms of responding to queries will be
decreased as the number of query in the query logs increases.
The shifting of some of the workloads of the database server to
the client prevents the constant utilization of infrastructure such
as the database server and network resources by properly
utilizing the previously requested information. It can also
decrease the response time for requesied queries that are
subdued to previously executed query.

Keywords
Queries, Database, Subducd Queries, Reusing Result Set,
Purging, Query Identification Number, Index;

1. INTRODUCTION

Reusing Queries contributes in speeding up the
performance of database in responding to future queries as it
can reduce the number of database queries to be processed and
sent back to the user. Moreover it can also decrease the
utilization of database resources as well as the infrastructure
cost according to West [1]. Information in databases is
typically accessed using SQL query. The select statement is
the responsible statements in order obtain results from a
database. A typical request of information in the database

SAMPLE: Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to

Dr. James A. Esquivel
Angeles University Foundation
Capas Tarlac Philippines
+639054407933
esquivel.james@auf.edu.ph

performs some steps before a user may able to view the
requested information. 1. The user formulates query using the
application software. 2. The application software connects to
the database and submits the query. 3. The database retrieves
data and returns these to the user. 4. The application software
receives the incoming data and presents them to the user.
These four steps will be repeated from time to time for every
query that will be made. This entails cost because the resources
of the database will be frequently utilized. If it will be applies
in a server-client setup, the bulk of the workloads will lies on
the database server as well as the regular utilization of
infrastructure is needed for the processing of every requested
query. The text of the query and its result set will be profiled
in the client side and it will be used to respond to future
subdued query to be executed.

2. OBJECTIVES
The objective of the study is to develop a model that will
enhance the capability of SQL Queries by employing purging
and elimination technique. Specifically it aims to;

1. Eliminate condition in the query before sending to

the database for evaluation.

2. Profile a query.
Purge queries that are subdued by incoming query.
4. Reuse past query in responding to requested query.

el

3. METHODOLOGY

3.1 Elimination

The purpose on the presence of a condition in the query is
designed to extract only those information from the database
that meets the criteria. This scenario will limits the number of
rows to be produced, thereby it also limits is ability to respond
to future subdued queries to be executed because its result set
when reused is only capable to answer subdued queries that are
joined with similar condition. In order to avoid this, the
requested query will undergo checking process to identify the
existence of a condition. If a condition is detected, next step is
removing it from the query before it will be sent to the database
for evaluation. Conditions in the query will be distinguished
by the existence of a “where” keyword in the query.

3.2 Query Profiling

Query Profiling will be applied after the querv undergone
elimination process. A folder that serves as the repository of
unique requested query will be created to store the text of the
query and its result set. A file will be created and it will contain
the text of requested queries which referred to as the query logs
[2]. The result set of the query will be exported as text file [3]
and it will be stored in a row and column format. The
uniqueness of the query is determined by its source where the
information will come from and the included field. Before the
text of the query will be registered in the query logs. it will be
attached with QUERY INDENTIFICATION NUMBER. which
is an auto number generated by the algorithm [4]. The
generation of QIN number will start to one (1) and progresses

the result set of the query; 3. Established relationship between
the text of the query and its result set and 4. Key to pinpoint
who among the profiled queries are capable to respond to the
requested query. The query logs will used purposely to respond
to queries that are subdued from the past queries. Requested
Queries that are unable to be responded by profiled queries will
be directed to source-out its data to the database and it will be
deposited in the repository.

Profiling Query

/ Unique Query /

A N
Query Logs Queryl Resuft set
Query2 Result set
Query3 Result set
Text of the query Resuit set of the query

Figure 1. The text of the select statement will be stored in the
query logs while its result set will be exported in the same
repository.

3.3 Purging

As a way of maintaining the repository as well as to efficiently
manage the space it utilizes, purging technique will be
emploved. The text of the profiled queries in the query logs
will be compared to the text of the incoming query. If the text
of the profiled queries stored in query logs matched or subdued
by the text of the incoming query then the text of the profiled
query in the query logs will be purged from the list along its
result set [5]. Text of profiled queries arc considered to be
subdued if it meets the criteria; 1. It’s source of data is similar
to the source of the incoming query and 2. Its field/s are all
existed in the incoming query. This technique was
implemented in order to avoid query capability duplication
because the incoming query contains or has the capability to
respond to future queries that can also be served by queries that
arc alrcady profiled. This method will not only reduce the
number of queries stored in the repository but also to free some
used space [6].

3.4 Method of Reusing Query

The text of the requested query will be compared to the text of
profiled queries in the query logs in order to determine who
among the profiled querics are responsive to the requirement of
the requested query. A profiled query in the query logs will
become responsive to the requirements of the requested query
if they have similar source and the field/s in the text of the
requested query are all existing in the text of the profiled query.
After determination, the QIN attached to the text of the profiled
query will be used to pinpoint its result sct followed by
extraction and population for the purpose of reuse [7]. An
index/es will be generated for the text of requested query by
way of matching it to the fields of the text of subdued profiled
query which cventually served as referenced field in the
populated result set in the format of rows and column followed
by iteration until the last data will be obtained.

Assume that this query requested;

and let assume that the query below is stored in the query
logs,

Select
user_id.username.first_name.last_name, gender password.status
from user details
The index/es would be;

2346

Reusing the query logs and its result set

'

L&)

Figure 2. Utilization of the generated indexes of the query as
bases in referencing to the populated result set of the query
logs.

4 PERFORMANCE TEST
4.1 Testing

The model was tested on a server-client setup. In the server
side, MySQL were used to create the database and the table
and uploaded a dataset containing ten thousand (10,000) rows
with seven (7) fields [8] [9]. The sample dataset was
downloaded at https:/www.sample-videos.com/download-
sample-sql.php. The uploading process was done by utilizing
the interface of phymyadmin. Seven (7) different queries were
formulated and executed using the designed model installed in
the client side. The queries are shown below.

Select user_id from user_details

Select user_id,username from user_details

Select user_id,username,firt name from user_details
Select user_id,username,first_name.last_name
user_details

Select user_id,username, first_name,last name.gender from
user_details

ohw. (R (5 ot

from

i

6. Select

user_id,username first_name,last_name,gender.password
from user_details

7. Select
user_id,username,first_name,last name,gender,password,st
atus from user_details

Every query was executed twice because in the first execution,
the model obtains its data from the database server and profiled
it in the client side. In the second execution, the query is
responded by utilizing the repository because it is now subdued
to the previous query which means the query will be served
locally [10]. Instead of obtaining the data to the database
server, the request will be serve locally. This method avoided
the utilization of the database server and network resources
because the data will not be obtained from the original source.
Two scenarios were used in executing the formulated queries
which is the ascending and descending order. In ascending

Avdne AF Avanitian thara aran a ahanan that tha Aonaee snildl ka

~ M w ~+ — c v 0 X

query will be purged because it is subdued by the incoming
query. After executing the seven queries, the last query which
is the “Select
user_id,usemame,ﬁrst_nameJast_name,gender,password,st
atus from user_details” retained i the repository. In
descending order of execution of the queries, the last query
which is the “Select
user_id,username,first_name,last_name,gender,password,st
atus from user_details” was executed first. The next six (6)
queries were not admitted to the repository because they are all
subdued to the first query.

Table 1. Latency incurred in the execution of the query.

for
First

Latency
the

Latency in
Second

Execution (in Execution

seconds) (in seconds)
Select user_id from | 0.26764297483 0.077657938
Select user_id,username | 0.31285214424 0.123073101
from user details 1
Select 0.36400580406 | 0.156177997
user_id,usemname, first_name 2 589

from user details
Select
userhid,username,ﬁrsluname
Jlast_name from user details

0.35187792778 | 0.175606012

344

Select 0.31780791282 | 0.204800844
user_id,username, first_name 7 193
Jast_name, gender from

user_details

Select 0.63918900480 | 0.251147985
user_id.username, first_name 8 458
Jlast_name, gender,password

from user_details

Select 0.43551301956 | 0.264527797
user_id,usemame, first_name 2 699

,last_name,gender,password,
status from user details
The result shows that the latency in the second execution was
decreased by fifty (50) percent as compared to the first
execution across to all the executed query. One of the
contributory factors for this reason is that in the second
exccution, the data were not travelled in the network instead
the query was served locally.

4.2 Simulator

The performance of the qQuery was simulated using the JMeter.
[11] [12] It will be the source of response time graph,
The response time is the clapsed time from the moment the
query is sent to the server until the moment when the last bit of
information has returned to the client [13]. Ten (10) users with
ten (10) loops counts at one (1) transaction per seconds were
set as the parameters for the testing of the query that accessed
data from the database server with 10000 rows. It is decided
that only the last query will undergo simulation because it is
the query that retained in the query logs.

Response Time Graph

[r—

Figure 3. Response time graph when the query Select

near id ncarnama firct nama lact nanma candar nacourard

Response Thne Gragh

2 8 8 K U 4 4 ELogop

Figure 4. Response time graph when the query Select
user_id,usemamc,ﬂrst_name,iast_namc,gcnder,password,
status from user_details was cexecuted for the second time.

The response time graph indicates that the figure 1 incurred
higher latency as compared to figure 2. The highest response
time per request in figure 1 is registered at almost 2000
milliseconds while in the figure 2 is almost 800 milliseconds.

S. CONCLUSION

In a scenario where the same information are to be accessed by
a substantial number of users, a single access can be

cater the needs of the entire users which substantially reduced
the amount of request being sent to the database which lead to
decreased utilization of infrastructure.

6. ACKNOWLEDGMEN TS

Thanks to my family for always there to support me. also to my
adviser for unstinting and invaluable assistance, to CHED, TAU
and AUF for giving me a chance to pursue this work.

REFERENCES
[1] West, M. (2013, January 8). Storing data on the local
client with LocalStorage. Retrieved August 18, 2017,
from http://blog.teamtreehouse.com/storing~dala-on-
Lhc—client-with-localstorage:
hitp://blog.teamtreehouse. com/

Khoussainova, N., Kwon, Y., Liao, W.-T., Balazinska,
M., Gatterbauer, W_, & Suciu, D. (2011). Session-Based
Browsing for More Effective Query Reuse. International
Conference on Scientific and Statistical Database
Management, 583-585.

2]

[3] Beck, T, Hastings, R. K., Gollapudi, S., Free. R. C., &
Brookes, A. J. (2014). GWAS Central: a comprehensive
resource for the comparison and interrogation of
genome-wide association studies, European Journal of

Human Genetics, 949-952.

Thakare, A., Dhande, P, M., & Bamnote, D. G. (2013).
Query Optimization in OODBMS using Query
Decomposition & Query Caching. International Journal
on Recent and Innovation Trends in Computing and
Communication, 469-474,

[4]

Guha, R. V. (2000). Patent No. 6081805. USA.

Shim, J., Scheuermann, P., & Vingralek, R. (2002).
Dynamic caching of query results for decision support
systems. JEEE.

Wang, Z, Xu, T, & Wang, D. (2015). Super Rack:
Reusing the Results of Queries in MapReduce Systems.
IEEE.

91

[10]

[11]

[12]

Simanjuntak, H. T., Simanjuntak2, L., Situmorang, G., &
Saragih, A. (2015). QUERY RESPONSE TIME
COMPARISON NOSQLDB MONGODB WITH
SQLDB ORABLE. JUTI, 95-105.

Hygerth, H., & Hakansson, M. (2016). Effcient Web
Scraping and Database Synchronizaiion. Stockholm:
Royal Institute of Technology KTH, Stockholm,
Sweden.

Flores, A., Ramirez, §S., Toasa, R., Vargas, J.
Barrionuevo, R. U., & Lavin, J. M. (2018). Performance
Evaluation of NoSQL and SQL Queries in Response
Time for the E-government. JEEE,

FOTACHE, M., & HRUBARU, 1 (2017).
PERFORMANCE ANALYSIS OF TWO BIG DATA
TECHNOLOGIES ON A CLOUD DISTRIBUTED
ARCHITECTURE. RESULTS FOR NON
NONAGGREGATE. Scientific Annals of Economics and
Business, 21-50.

[13] Vahlas, N. (2018, August 1). some-thoughts-on-stress-

lesting-web-applications-with-jmeter-part-2. Retrieved
from >Some thoughts on stress testing web applications
with IMeter (part 2)
https:/mico.vahlas.eu/2010/03/30/some-thoughts-on-
strcss-tcsting—web-applicalions-with-jmcter—part—Z/

